
1

Deliverable 2

COMMIT TO

MASTER

Mahima Bhayana

Kalindu De Costa

Victor Lee

Harman Wadhwa

Leo Yao

CSCD01

COMMIT TO MASTER

2

Table of Contents

ISSUES 2

 #12911 2-5

 #2341 5-7

 #11746 8-10

 #8532 10-12

DEVELOPMENT PROCESS 12

Issue #12911

https://github.com/matplotlib/matplotlib/issues/12911

Background

The tick_params method of Axes3D does not properly change the colour of the ticks--it

(incorrectly) changes only the colour of the tick label, not of the tick itself. As such, setting the

colour of the ticks of an Axes3D object would result in the figure having black ticks with labels

in the indicated colour.

https://github.com/matplotlib/matplotlib/issues/12911
https://github.com/matplotlib/matplotlib/issues/12911

COMMIT TO MASTER

3

Solution

We found that the tick_params method was actually setting the colour of the ticks properly,

but that this colour was being overwritten in the draw method of axis3D.

The solution for this problem ended up being rather simple--we had to stop the method from

overwriting the tick color. Removing this line, which sets the tick colour to a hard-coded value

(‘k’, for black) stored inside self._axinfo.

Found in the class Axis in lib/mpl_toolkits/mplot3d/axis3d.py

This change helped remove dependence on a legacy, hard-coded value from the Axis3D

class. A comment on the issue revealed that self._axinfo in the Axis3D class is just a

dictionary created years ago to consolidate hard-coded values into one object. While this

change didn’t impact the design/code of matplotlib very heavily, it did prevent it from relying

on legacy hard-coded values that are no longer relevant.

Acceptance test suite

We added image comparison tests to lib/mpl_toolkits/tests/test_mplot3d.py.

COMMIT TO MASTER

4

These tests ensure that the tick colour is indeed being set when we use tick_params, and

also ensure that figures look the way they are supposed to when the colour is not explicitly

set. We added additional tests to set the colours multiple times and ensure that the last colour

set is the one that displays on the figure.

COMMIT TO MASTER

5

Issue #2341

https://github.com/matplotlib/matplotlib/issues/2341
Background

PatchCollection cannot handle FancyArrowPatch patches, as the paths for FancyArrowPatch

can't be evaluated during PatchCollection creation. The StreamplotSet.arrows

PatchCollection appears to be entirely useless. In fact, streamplot() doesn't even add the

collection to the axis, instead adding the individual patches, and then creating an unused

PatchCollection to return. This means that things that should work, like, for a StreamplotSet s,

doing s.arrows.set_alpha(0), will not work, nor, to my knowledge, will doing anything with

StreamplotSet.arrows have the desired result.

https://github.com/matplotlib/matplotlib/issues/2341

COMMIT TO MASTER

6

Solution

• Creating a new Collection: FancyArrowPatchCollection that is an extension of

PatchCollection. This will allow FancyArrowPatches to be altered by attributes such as

set_alpha and set_color. (lib/matplotlib/collections.py)

• FancyArrowPatchCollection will properly handle get_path and set_path for the Collection

as well as _prepare_points to properly calculate the paths.

• Previously StreamPlot was manually adding all FancyArrowPatchs individually to the axes

without using the collection, now with the new collection this step is unnecessary and the

collection can be added directly to axes. (lib/matplotlib/streampot.py)

Acceptance test suite

Tests are based on image comparison (lib/matplotlib/tests/test_streamplot.py)

1. The first is to test set_alpha attribute, which creates a streamplot and triggers the alpha

values of the lines and arrow.

Expected outcome: A blank plot

2. The second is to test set_color attribute, which creates a streamplot and changes the

colour of lines and arrows.

Expected outcome: A plot with red lines and blue arrowheads

Since prior to this fix, none of the attributes for the arrows were working, here we are testing

some attributes which are used commonly to verify that, arrows are affected by such

attributes.

COMMIT TO MASTER

7

COMMIT TO MASTER

8

Issue #11746

https://github.com/matplotlib/matplotlib/issues/11746
Background

The arrowheads of arrows in 3D space appears to converge and disappear as the scale of

the axis increases. When calling quiver(*args, length=1, arrow_length_ratio=0.3, pivot='tail',

normalize=False, **kwargs) from mpl_toolkits.mplot3d.axes3d.Axes3D, there is a predefined

angle which calculates 2 (fixed) points where the arrowhead ends. These 2 points are then

connected to the tip of the arrow itself, to create the triangular point.

However, as the scale of the axis increase (z-axis in this example), the same 2 points will

appear closer to the body of the arrow itself and look as if it had disappeared.

https://github.com/matplotlib/matplotlib/issues/11746

COMMIT TO MASTER

9

Notice the difference in the z-axis scale between both diagrams. The distance between the 2

points are exactly the same on both diagrams, just that the perceived distance between them

is skewed from the difference in scale.

Solution

Users are now able to pass in an extra parameter, headwidth, to set the headwidth of an

arrow in 3D space. Headwidth is used the same way as in 2D space: it is the width of the

arrowhead relative to the axis it is drawn in.

How it works: headwidth (new parameter), length of the arrow body, and the ratio of the

arrowhead to the arrow body are considered to determine the angle necessary to achieve it.

The angle is a crucial part of construction of an arrow, and is the only parameter that changes

the behaviour of the arrowhead. Using simple trigonometry, the following formula is used to

calculate the angle:

This eliminates the concern of arrowheads "touching" the body of the arrow itself when a large axis is
used. For the above example, a user would construct the arrows in the second diagram by calling
quiver with the additional parameter, headwidth, at 100. The changes made allow the 3D
implementations of arrow and its functions to be capable of performing those of the 2D
implementation. The new implementation allows the user to pass in an extra parameter in calc_arrow,
(headwidth), to set the desired width of the arrowhead relative to the axis.

Code snippet from mpl_toolkits.mplot3d.axes3d.Axes3D

COMMIT TO MASTER

10

Acceptance test suite

Tests are based on image comparison (lib/matplotlib/tests/test_quiver.py)

The test creates a single arrow with the custom headwidth as an input parameter.

Issue #8532

https://github.com/matplotlib/matplotlib/issues/8532
Background

This is a new feature. Matplotlib can create violin plots. Perpendicular lines can be drawn on

these plots to mark the min, max, mean and median. This new feature will add the ability to

draw lines on a user provided percentiles. Example of a violin plot marking the min and max is

shown below.

https://github.com/matplotlib/matplotlib/issues/8532
https://github.com/matplotlib/matplotlib/issues/8532

COMMIT TO MASTER

11

Solution

Users can now pass in a Boolean “showpercentiles” (following the “show*” convention for

mean, median etc…) and a list of percentiles to plot on the violin.

Based on the input data, we simple calculate the percentiles for each distribution and draw a

perpendicular line at the calculated point. The functionality to draw a calculated point already

exists, so the newer code calculates the percentiles and utilises the existing functionality to

draw the lines

Code snippet from matplotlib.axes._axes.py

Acceptance test suite

Tests are based on image comparison (lib/matplotlib/tests/test_quiver.py)

The test creates a violinplot with random data and marks the 5th and 95th percentiles on the

plot.

COMMIT TO MASTER

12

Development Process

1. Each issue was created on the Team repo on Github and assigned to one of more

team members.

2. Fixes for each issue were coded on separate branches.

3. Upon completion of coding a fix and creating test cases, pull requests were made for

each branch.

4. The code was reviewed by at least one other team member and requested changes, if

any, were incorporated.

5. Upon approval, pull requests were merged into the master branch.

Evidence of the above process can be found on the team repo

(https://github.com/CSCD01/team14-project)

https://github.com/CSCD01/team14-project
https://github.com/CSCD01/team14-project

