
Deliverable 2: Step 1 
 
Selected Issues:  
1) https://github.com/matplotlib/matplotlib/issues/12911  
2) https://github.com/matplotlib/matplotlib/issues/11759  
3) https://github.com/matplotlib/matplotlib/issues/11746  
4) https://github.com/matplotlib/matplotlib/issues/2341  
5) https://github.com/matplotlib/matplotlib/issues/8532  
 
Issues selected for implementation: #11746, #12911, #11759 
 
Issue: #11746 
  
The size of a 3D arrow head plotted with Axes3D.quiver (is disproportional) 
  
Code for reproduction: 
  
import numpy as np 

import matplotlib.pyplot as plt 

from mpl_toolkits.mplot3d import Axes3D 

  

x = np.zeros(10) 

y = np.zeros(10) 

z = np.arange(10)*100 # remove *100 and the arrow heads will reappear. 

dx = np.zeros(10) 

dy = np.arange(10) 

dz = np.zeros(10) 

  

fig = plt.figure() 

ax = 

fig.gca(projection='3d') 

ax.quiver(x, y, z, dx, dy, 

dz) 

ax.set_ylim(0,10) 

  

plt.show() 

 

Actual outcome: 
Expected outcome: 



  
import numpy as np 

import matplotlib.pyplot as plt 

from mpl_toolkits.mplot3d import Axes3D 

  

x = np.zeros(10) 

y = np.zeros(10) 

z = np.arange(10) # change in scale on the z axis. 

dx = np.zeros(10) 

dy = np.arange(10) 

dz = np.zeros(10) 

  

fig = plt.figure() 

ax = fig.gca(projection='3d') 

ax.quiver(x, y, z, dx, dy, dz) 

ax.set_ylim(0,10) 

  

plt.show() 

  

  



  
  
This bug is likely caused by the construction logic of the arrow itself. As per picture, b, the 

distance between the diagonal and the line itself, is dependant on c, the length of the arrow. 

However, between the diagram for actual outcome, c does not change as it is only dependant on 

the y direction. As a result, the value for b (in the z direction) stays the same. The underlying 

problem lies in the scale of the z increasing such that the value of b looks very tiny. For example, 

The value of b might be 1 in the diagram for expected outcome and span over 1 grid line since 

the scale is divided in intervals of 1, but will span over 1/100 grid lines for the actual outcome as 

the scale is divided in intervals of 100. 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
Issue: #12911 
 
Tick mark color cannot be set on Axes3D 
 
Code for reproduction: 
>>> 

from mpl_toolkits.mplot3d import Axes3D 

from matplotlib import pyplot as plt 

 

fig = plt.figure() 

ax = Axes3D(fig) 

 

ax.scatter((0, 0, 1), (0, 1, 0), (1, 0, 0)) 

ax.w_xaxis.line.set_color('red') 

ax.w_yaxis.line.set_color('red') 

ax.w_zaxis.line.set_color('red') 

ax.xaxis.label.set_color('red') 

ax.yaxis.label.set_color('red') 

ax.zaxis.label.set_color('red') 

ax.tick_params(axis='x', colors='red')  # only affects 

ax.tick_params(axis='y', colors='red')  # tick labels 

ax.tick_params(axis='z', colors='red')  # not tick marks 

 

plt.show() 

>>> 
 
Actual outcome: 
 
 
 
 
Expected Result: 
 



The tick marks on the axis should be red, instead of black.  
 
Possible solution for this problem in matplotlib/lib/mpl_toolkits/mplot3d/axis3d.py 
>>> tick.tick1line.set_color(info['tick']['color'])  
 
Issue: #11759 
 
The colour of the 3D arrow head does not match that of the arrow body. 
 
Code for reproduction: 
 
import numpy as np 
import matplotlib.pyplot as plt 
from mpl_toolkits.mplot3d import Axes3D 
 
x = np.zeros(10) 
y = np.zeros(10) 
z = np.arange(10.) 
dx = np.zeros(10) 
dy = np.arange(10.) 
dz = np.zeros(10) 
 
fig = plt.figure() 
ax = fig.gca(projection='3d') 
 
arrow_color = plt.cm.Blues(dy/dy.max()) 
 
ax.quiver(x, y, z, dx, dy, dz, colors=arrow_color) 
ax.set_ylim(0,10) 
plt.show() 
 
 
Actual Outcome: 
 
 
 
 
 
 
 
 
 
 

https://github.com/matplotlib/matplotlib/blob/2c1cd6bb0f4037805011b082258c6c3923e4cf29/lib/mpl_toolkits/mplot3d/axis3d.py#L439


 

 

 

It appears as though the line “arrow_color = plt.cm.Blues(dy/dy.max())” might be the cause of 

this bug. The reason for this suspicion is because when simply assigning “arrow_color” to be 

“Blue”, we get the follow outcome: 

import numpy as np 
import matplotlib.pyplot as plt 
from mpl_toolkits.mplot3d import Axes3D 
 
x = np.zeros(10) 
y = np.zeros(10) 
z = np.arange(10.) 
dx = np.zeros(10) 
dy = np.arange(10.) 
dz = np.zeros(10) 
 
fig = plt.figure() 
ax = fig.gca(projection='3d') 
 
arrow_color = “Blue” 
 
ax.quiver(x, y, z, dx, dy, dz, colors=arrow_color) 
ax.set_ylim(0,10) 
plt.show() 

 

 

 

 

 

 



 

 

 

Notice that in this instance we get an arrow head and body with matching colours. Through 

further investigation we will explore the impact “plt.cm.Blues(dy/dy.max())” has on the code 

responsible for assigning colour to the arrow head and body. Understanding the impact that this 

line has on the code base will be a good place to start in terms of understanding where fixes 

could be made. Victor will be tasked with further investigating this bug. Since the exact location 

of this bug has not been found, allocating group members to the implementation and testing of 

this issue has yet to be determined. The size and perceived complexity to fix this bug will be the 

main factor when allocating group members. 

 

 


